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Abstract. Theoretical analysis of the layered quasi-periodic Fibonacci structures (superlattices-sequence)
is presented for the systems consisting of nA and nB ferromagnetically ordered planes within the layers with
Sa and Sb spins, respectively, while the interfaces are coupled with bilinear and/or biquadratic exchange
interaction, within the framework of localized spin model in the low-temperature limit. Transfer matrix
method and direct diagonalization after the bosonization in Bloch’s approximation resulted both in the
same analytical expression for the magnon-excitation energy. The equivalence (at low-temperatures) of the
transfer matrix (spin) and boson approach was discussed, as well as the role of the interlayer biquadratic
coupling between different blocks constituting the Fibonacci sequences. Also, our approach allows the
determination of the internal energy and calculation of the magnon contribution to the specific heat. It
was clearly demonstrated that the magnon specific heat vanishes for T → 0. Our results are compared
with the results of other authors.

PACS. 71.70.Gm Exchange interactions – 75.30.Ds Spin waves – 75.30.Hx Magnetic impurity interactions

1 Introduction

There are situations in modern physics where the theo-
retical studies on various models interplay with techno-
logical developments allowing the realization of materi-
als simulating these models and the experimental studies
of these materials. Such case occurred with quasiperiodic
structures, 1d structures arranged in a particular manner.
In fact, there we encounter so called superlattices where
the set of planes with particular physical properties is ar-
ranged in a particular manner along the preferred direc-
tion. This can be realized by modern techniques of produc-
ing layered materials [1–3]. There are several interesting
systems that could be realized and it seems worthwhile to
study their properties, their energy spectrum in particu-
lar.

We are going to concentrate here on the problem of
magnetic Fibonacci lattice, more precisely on a quasiperi-
odic structure whose magnetic cells are constructed fol-
lowing Fibonacci series: A, AB, ABA, ABAAB, ... i.e.
on the mapping A → AB, B → A. This problem was the
subject of numerous studies [4,6–10,5], yet it is our opin-
ion that there appear certain serious inconsistencies in the
previous work, so we wish to reconsider the problem here.

a e-mail: milman@im.ns.ac.yu

The planes are ferromagnetically ordered and inter-
act ferromagnetically. We first noticed that there exists
some problem with accounting the contribution of the bi-
quadratic interaction. This lead us to reexamine the trans-
fer matrix (TM) method calculations and obtain rather
different results. In order to test these results, we per-
formed the calculation within boson picture and obtained
the same results. This approach allows us the calculation
of the specific heat using Bose-Einstein statistics.

The basic model is introduced in Section 2 together
with TM calculations. Section 3 is dedicated to the justifi-
cation of the use of Bose-Einstein statistics for the calcula-
tion of thermodynamic properties. Numerical calculations
of the consequences of our results are derived in Section 4,
with the comparison with the results of the previous stud-
ies performed. Conclusions are in the Section 5.

Let us briefly comment here on possible extensions of
the model. The planes are ferromagnetically ordered and
interact ferromagnetically, both interactions described by
the Heisenberg Hamiltonian, with biquadratic interaction
added at the AB interfaces. The character of interaction
can be modified by inserting the non-magnetic planes, or
adding the spin dipole exchange [11]. Another extension
of the model is by introducing antiferromagnetic interac-
tion [12].
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Fig. 1. Schematic representation of ferromagnetic superlat-
tices (notation defined in text).

2 The model and transfer matrix calculations

Our aim is to study the series of superlattices,
each one consisting of periodically repeating cells
which represent one generation in Fibonacci series
(Fibonacci generation = FG). We assume that the under-
lying lattice is a simple cubic one, with lattice constant a.
We then consider a set of parallel planes with z-axis ori-
ented orthogonal to the planes. The planes are built up
of ferromagnetically (FM) interacting ions with spins SA

(A-layers) and SB (B-layers). We consider only the nearest
neighbors interaction and assume that the spins within the
planes and between the planes of the same type interact
by the common (bilinear) Heisenberg interaction, while at
AB interface, the spin can interact by both bilinear and
biquadratic interaction. A-spins interact by the exchange
interaction JA, B-spins by JB . However, spins do form
cells, and the interaction between two cells with bound-
ary A-planes is IAA = IA and with different boundary
planes is IAB = I. A closer look at Fibonacci series shows
that there are no cell contacts with two B-planes, so this
is the complete set of interactions. At AB interface, we
shall also add later the biquadratic term.

Above mentioned superlattices are constructed in the
following manner. A-spins are appearing in the blocks of
nA planes, while B-spins occur in blocks of nB planes.
We represent each term in Fibonacci series by a superlat-
tice where A term is represented by a block of A-planes
and B-term by the block of B-planes. The cells that are re-
peated, are consisting of a given term. The Figure 1 shows
two different terms schemattically.

The total number of blocks within the νth FG is equal
to the number of A-blocks and B-blocks:

g(ν) = gA(ν) + gB(ν). (1)

This number is defined by the basic relations:

g(ν) = g(ν − 1) + g(ν − 2); gA(ν) = g(ν − 1)
gB(ν) = g(ν − 2) (2)

so that the total number of planes within one cell of νth
FG equals:

Nν = gA(ν) nA + gB(ν) nB = g(ν − 1) nA + g(ν − 2) nB.
(3)

It is not common to write down the complete Hamilto-
nian, yet we shall do it in order to be able to perform

the bosonization completely. The Hamiltonian describing
superlattice corresponding to νth generation is given by:

Ĥ = −1
2

∑

m

Nν∑

n=1

Jn

∑

�
−→
δ ‖

{
1
2

[
Ŝ−

m�(n)Ŝ+
m�+δ‖(n) + H.c.

]

+ Ŝz
m�(n)Ŝz

m�+δ‖(n)

}

−
∑

m

∑

�

{
Nν−1∑

n=1

In,n+1

[
1
2

(
Ŝ−

m�(n)Ŝ+
m�(n + 1) + H.c.

)

+ Ŝz
m�(n)Ŝz

m�(n + 1)

]

+
1
2
INν ,1

[
1
2

(
Ŝ−

m�(Nν)Ŝ+
m+1�(1)+Ŝ−

m−1�(Nν)Ŝ+
m�(1)+H.c.

)

+ Ŝz
m�(Nν)Ŝz

m+1�(1) + Ŝz
m−1�(Nν)Ŝz

m�(1)

]}
. (4)

The subscript “m” enumerates the cells, the subscript “n”
enumerates the planes within the cell. The position of
the spin within the plane is specified by ρ and δ|| corre-
sponds to the four nearest neighbors within the plane. As
mentioned above, Jn takes the values JA or JB, In,n+1

takes the value JA within A-block, and JB within B-
block, IA between two A-blocks and I between A-block
and B-block, irrespective of the order. We assume that
INν ,Nν+1 = INν ,1 = IA or I. In order to simplify the nota-
tion, we consider Ŝ(n) to be ŜA or ŜB depending on the
block.

Now we sketch briefly the procedure established by
Barnas [13] and generalized in our previous work [14]. One
performs the Fourier-transformation within the plane,
which is then characterized by the wave-vector k||. The
equations of motion are evaluated for the spin operators
Ŝ+

A/B and linearized with Ŝz
A/B → SA/B. Operators are

then substituted by spin-wave amplitudes. Using this set
of equations, the transfer matrices M̂n can be introduced
following the procedure elaborated in Section 2 of refer-
ence [14]. The procedure presented there is the general-
ization of the procedure proposed previously [6–9], since
our approach allows even for the situation with one plane
per block, while procedure of [6–9] can not be applied for
blocks with less than three planes (so that at least one of
the planes has to be the “bulk” one). The equivalence of
the two approaches for n ≥ 3 in AB generation is easily
proved.

We are interested in the manner in which the matrices
T̂ν related to the superlattice cell of νth FG, can be con-
structed. It turns out that all such matrices can be divided
into two groups.
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The first group consists of the matrix

T̂AA(A) = M̂AA(r) M̂nA−2
A M̂AA(l);

M̂A =

( εA − E

SAJA
−1

1 0

)
(5)

where M̂A is the “bulk” transfer matrix of A-block with
εA = 4JASA(1 − γk‖) + 2JASA, γk‖ = 1

2 (cos kxa +
cos kya) and

M̂AA(r) =

⎛

⎝
εAA − E

SAIA
−JA

IA
1 0

⎞

⎠ ;

M̂AA(l) =

⎛

⎝
εAA − E

SAJA
− IA

JA
1 0

⎞

⎠ (6)

are right and left boundary matrices, respectively, with
εAA = 4JASA(1 − γk‖) + SA(JA + IA). It is essential to
stress that this matrix appears only in the first FG, where
only A-blocks are present.

Transfer matrices of all other generations can be ex-
pressed in terms of four basic matrices. These are:

1) T̂AA(B) = M̂BA(B) M̂nB−2
B M̂AB(B) with the

“bulk” matrix of B-block

M̂B =

( εB − E

SBJB
−1

1 0

)
(7)

and εB = 4JBSB(1 − γk‖) + 2JBSB and two “boundary”
matrices:

M̂BA(B) =

⎛

⎝
εBA(B) − E

SBI
−JB

I
1 0

⎞

⎠ ;

M̂AB(B) =

⎛

⎝
εAB(B) − E

SBJB
− I

JB
1 0

⎞

⎠ (8)

and εAB(B) = εBA(B) = 4JBSB(1− γk‖) + JBSB + ISA.
This matrix corresponds to B-block which is always situ-
ated between two A-blocks.

2) T̂BB(A) = M̂AB(A) M̂nA−2
A M̂BA(A) with bound-

ary matrices

M̂BA(A) =

⎛

⎝
εBA(A) − E

SAJA
− I

JA
1 0

⎞

⎠ ;

M̂AB(A) =

⎛

⎝
εAB(A) − E

SAI
−JA

I
1 0

⎞

⎠ (9)

and εAB(A) = εBA(A) = 4JASA(1 − γk‖) + JASA + ISB.
This matrix corresponds to A-block which is situated be-
tween two B-blocks.

3) T̂AB(A) = M̂AB(A) M̂nA−2
A M̂AA(l); 4) T̂BA(A) =

M̂AA(r) M̂nA−2
A M̂BA(A).

These two matrices correspond to A-block situated be-
tween A-block and B-block in two different orders.

Using these four matrices, one can write the transfer
matrices of several first Fibonacci generations:

T̂1 = T̂AA(A); T̂2 = T̂AA(B)T̂BB(A);

T̂3 = T̂BA(A)T̂AA(B)T̂AB(A).

Taking into account two important facts:
T̂AA(A) �= T̂BA(A) and T̂BB(A) �= T̂AB(A) we ob-
tain an important result T̂3 �= T̂1 · T̂2. If we con-
tinue, we obtain T̂4 = T̂AA(B) T̂AB(A) T̂BA(A)
T̂AA(B) T̂BB(A), T̂5 = T̂BA(A) T̂AA(B) T̂BB(A) T̂AA(B)
T̂AB(A) T̂BA(A) T̂AA(B) T̂AB(A). It can be easily con-
cluded that T̂4 �= T̂2 · T̂3 and T̂5 �= T̂3 · T̂4, since boundary
matrices are different.

This implies that practically none of the results pre-
sented in previous works [6–9] based on the recurrent re-
lation

T̂ν = T̂ν−2 · T̂ν−1 (10)

is valid. Further consequences of this fact will be analyzed
later.

Following [14], the energy of the elementary excitations
in the system is obtained by solving the equation

trT̂ν ≡ (T̂ν)11 + (T̂ν)22 = 2 coskzLν; Lν = Nνa (11)

since the matrix elements depend on E.
We wish to calculate properties of the system like the

spin wave spectrum, internal energy and specific heat.
There arises the problem of the statistics of these exci-
tations [6,7]. The solution of this problem can be found
in the following manner. The linearization of the spin-
equations of motion is completely equivalent to the tran-
sition from spin operators into Bloch’s approximation of
non-interacting bosons. We shall demonstrate it in the fol-
lowing section.

3 System of non-interacting bosons approach

Let us look at the most general Hamiltonian for the su-
perlattice with N layers where each spin has the different
value and all interactions are different.

The linearization of spin equation of motion (applied in
the construction of transfer matrices) is completely equiv-
alent to the bosonization in terms of Bloch’s approxima-
tion, i.e. Ŝ+ � √

2Sb̂, Ŝ− � √
2Sb̂+, Ŝz � S − b̂+b̂.
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The boson Hamiltonian can be written in the form:

ĤB = −1
2

∑

m

N∑

n=1

Jn

∑

�
−→
δ ‖

Sn

{[
b̂+
m�(n)b̂m�+δ‖(n) + H.c.

]

−b̂+
m�(n)b̂m�(n) − b̂+

m�+δ‖(n)b̂m�+δ‖(n)
}

−
∑

m

{
N−1∑

n=1

In,n+1

∑

�

[
√

SnSn+1

(
b̂+
m�(n)b̂m�(n + 1)

+ b̂m�(n)b̂+
m�(n + 1)

)
− Snb̂+

m�(n + 1)b̂m�(n + 1)

−Sn+1b̂
+
m�(n)b̂m�(n)

]
+

1
2
IN,1

[
√

S1SN

(
b̂+
m�(N)b̂m+1�(1)

+b̂+
m−1�(N)b̂m�(1) + H.c.

)

− SN

(
b̂+
m+1�(1)b̂m+1�(1) + b̂+

m�(1)b̂m�(1)
)

− S1

(
b̂+
m�(N)b̂m�(N) + b̂+

m−1�(N)b̂m−1�(N)
)]}

. (12)

Let us now perform three-dimensional Fourier-
transformation (N2 = NxNy, k = (k‖, kz)) of boson
operators

b̂m�(n) =
1√

N2Nz

∑

k||kz

b̂n(k)eik‖·�+i[mL+(n−1)a]kz . (13)

The quadratic boson Hamiltonian (12) takes the form:

ĤB =
∑

k

N∑

n=1

{
εn b̂+

n (k)b̂n(k)

+
[
Vn,n+1(k) b̂+

n (k)b̂n+1(k) + H.c.
]}

(14)

where εn is given by equation (3) from [14], while

ε1 = 4J1S1(1 − γk‖) + IN,1SN + I12S2;

εN = 4JNSN(1 − γk‖) + IN,1SN1 + IN,N−1SN−1

and

Vn,n+1(k) = −In,n+1

√
SnSn+1 eikza, n = 1, 2, ..., N.

(15)
This Hamiltonian is diagonalized by the typical unitary
transformation

b̂n(k) =
N∑

α=1

unα(k) âα(k) (16)

leading to the final result

ĤB =
∑

k

N∑

α=1

Eα(k) â+
α (k)âα(k) (17)

where the magnon excitation energies are determined from
the determinant

det | V nn′(k) − E δnn′ |= 0 (18)

with V nn′(k) = εn δnn′ + Vnn′(k). This is N × N deter-
minant, which has the following form for N ≥ 3:

∆N (E) =
∣∣∣∣∣∣∣∣∣∣∣∣

E − ε1 −V12 0 · · · 0 −V ∗
1N−V ∗

12 E − ε2 −V23 · · · 0 0
0 −V ∗

23 E − ε3 −V34 · · · 0
...

...
...

. . .
...

...
0 · · · 0 −V ∗

N−2,N−1 E − εN−1 −VN−1,N

−V1N 0 · · · 0 −V ∗
N−1,N E − εN

∣∣∣∣∣∣∣∣∣∣∣∣
(19)

while for N = 1 and N = 2 one can use directly the
values from the Hamiltonian. One can test, some simple
cases like N = 1, 2, 3, 4 to see that the energies obtained
in two manners i.e. from (11) and ∆N (E) = 0 are the
same. One can also prove that for any layer number N ,
after expanding the determinant, all kz dependent terms
lead to a single term of the type cos kzNa. Actually we
can expand the above determinant leading to the general
expression in terms of subdeterminants (Dν and D̃ν):

∆N (E) = A1A2DN−2 − A1b
2
3DN−3 − b2

2DN−2

− b2
1D̃N−2 + (−1)N−1

N∏

σ=1

bσ · 2 cosNkza (20)

with the following notations: An = E − εn, bn =
In,n−1

√
SnSn−1, while the subdeterminants Dν and D̃ν

satisfy the following recurrent relations:

Dν = AN−ν+1Dν−1 − b2
N−ν+2Dν−2;

D0 = 1, D1 = AN ; 2 ≤ ν ≤ N − 1

i.e.

D̃ν = AN−νD̃ν−1 − b2
N−ν+1D̃ν−2;

D̃0 = 1, D̃1 = AN−1, 2 ≤ ν ≤ N − 1.

Using these recurrent relations, one can prove by the
mathematical induction that the roots of the equation
∆n(E) = 0 are the same as the energies obtained from
equation (11). This completes our proof of the equiva-
lence of two approaches. This means that one can use the
energies obtained from (11) and use the standard Bose-
Einstein statistics valid for non-interacting bosons to eval-
uate all the important quantities.

Using the energies of elementary excitations
Eν(k); (ν = 1, 2, ..., Nν) defined by equation (11),
the contribution to the internal energy at temperature T
due to magnons is written as

〈Ĥ〉 = U =
∑

k

Nν∑

ν=1

Eν(k)
eEν(k)/θ − 1

, θ = kBT (21)
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while specific heat in this case (of non-interacting Bosons)
is given by

CV =
∂U

∂T
= kB

∂U

∂θ
=

kB

θ2

∑

k

Nν∑

ν=1

E2
ν(k) eEν(k)/θ

(
eEν(k)/θ − 1

)2 . (22)

The expression for (20) can be written also as

∆N (E) = EN + a
(N)
N−1E

N−1 + . . . + a
(N)
1 E + a

(N)
0 (23)

where the coefficients aj depend on both k‖ and kz . If one
expands a0(k‖, kz) up to k2, it can be shown by inspec-
tion, that k-independent terms cancel exactly, so that the
expression for a0 vanishes for k = 0. More precisely

a
(N)
0 (k) = a0

(N)
xy (k2

x + k2
y) a2 + a0

(N)
z k2

z c2. (24)

This is in fact the statement of Goldstone theorem, claim-
ing that there exists at least one excitation mode whose
energy vanishes for k = 0. It is obvious that such mode
dictates the low-temperature behavior. Let us denote it
by E1:

E1 = αN a2(k2
x + k2

y) + βN c2k2
z , c = Na.

Looking at (23), one can see that just last two terms are
sufficient to determine αN and βN . Using

a
(N)
1 (0)

[
αN (k2

x + k2
y) a2 + βN k2

z c2
]
+ a0

(N)
xy (k2

x + k2
y) a2

− a0
(N)
z k2

z c2 = 0

one obtains

αN = − a0
(N)
xy

a
(N)
1 (0)

; βN = − a0
(N)
z

a
(N)
1 (0)

.

Using this, the expression for internal energy (21) can be
written in the form

U

N0
=

1
N0

∑

k

Nν∑

ν=1

Eν(k)
eEν(k)/θ − 1

≈ 1
N0

∑

k

E1(k)
eE1(k)/θ − 1

+ O(e−Ωmin/θ) (25)

where Ωmin is minimal value of the gap in all other energy
branches and N0 = N2Nz. Going over from summation to
integral over the first Brillouin zone, we obtain

U

N0
≈ 1

N0

∫ π

0

∫ π

0

∫ π

0

αN (q2
x + q2

y) + βNq2
z

e(αN q2
‖+βN q2

z)/θ − 1
× dqxdqydqz + O(e−Ωmin/θ). (26)

Integrating over the angles in spherical coordinates and
extending the integration limit over radius to infinity (jus-
tified for low temperatures), one obtains the result

U

N0
=

ξ(5/2)Γ (5/2)
4π2αN

√
βN

θ5/2 + O(e−Ωmin/θ) (27)

Fig. 2. The spin-wave energy E/ISA in terms of Λk|| for

AB (nA = nB = 1). Calculation parameters: SA = 1, SB =
3/2, JA = 0.8, JB = 0.4.

leading to

Cv

N0
=

5ξ(5/2)Γ (5/2)
8π2αN

√
βN

θ3/2 + O(e−Ωmin/θ). (28)

In this way, we have shown analytically that specific heat
behaves as θ

3
2 . One test of the correctness of our result is

the fact that for isotropic case (αN = βN ) we obtain the
standard result for noninteracting bosons [15].

Let us mention that bosonisation within the frame-
work of Holstein-Primakoff approximation was applied to
Heisenberg superlattice with various anisotropies [16] but
no attempt was made to relate it to the transfer matrix
procedure.

Since the energies can be evaluated only numerically,
we shall proceed to numerical calculation in the next sec-
tion.

4 Numerical calculations

4.1 Spin-wave spectrum

We have decided to plot the renormalized spin-wave en-
ergy (divided by the AB interface energy ISA) in terms
of Λk|| = 1 − γk|| . We plot here the energy bands of the
second and third FG i.e. AB and ABA, while choosing
kya = 0. In order to show the advantages of our ap-
proach, we performed the calculations for nA = nB = 1,
something that can not be performed with approach pro-
posed in [6–9] demanding at least 3 planes within the cell
(n ≥ 3). The parameters chosen will be SA = 1, SB =
3/2, JA = 0.8, JB = 0.4 while in the third generation
we also add IA = 0.6.

Presented figures clearly indicate that for given system
parameters, the number of bands exactly corresponds to
the index of FG. The limits of the bands in the Figures 2–5
correspond to the value kzLν = 0 and kzLν = π, such
that we have an alternation from one band to another,
following the sequence 0, π; π, 0; 0, π; ... starting from the
lowest band.

It is very difficult to compare our results with the re-
sults of Bezerra et al. [6–9] since they do not quote the
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Fig. 3. The spin-wave energy E/ISA in terms of Λk|| for

ABA (nA = nB = 1). Calculation parameters: SA = 1, SB =
3/2, JA = 0.8, JB = 0.4, IA = 0.6.

Fig. 4. The spin-wave energy E/ISA in terms of Λk|| for

AB (nA = nB = 1) with the biquadratic exchange at the
interface. Calculation parameters: SA = 1, SB = 3/2, JA =
0.8, JB = 0.4, Jbq/I = 1.8.

Fig. 5. The spin-wave energy E/ISA in terms of Λk|| for

ABA (nA = nB = 1) with the biquadratic exchange at the
interface. Calculation parameters: SA = 1, SB = 3/2, JA =
0.8, JB = 0.4, IA = 0.6, Jbq/I = 1.8.

complete set of parameters. One should stress that the
qualitative agreement of our results and the results of
mentioned authors, are comparatively good. Yet, it is dif-
ficult to follow the comparatively rare manner of plotting
the magnon energy for fixed values of wave-vector within
the I Brillouin zone as given in the above quoted papers.

4.2 Biquadratic coupling

Let us now add the biquadratic coupling (Jbq) at AB in-
terface following [8]. It is easy to calculate the contribution
of biquadratic coupling to bilinear coupling after the lin-
earization. A tedious calculation leads to the additional
expression in the equation of motion

i�
dS+

A

dt
= Jbq[SA(SB − 1) + SB(SA − 1)](SAŜ+

B − SB Ŝ+
A).

(29)
This expression just confirms the well-known result [17]
that at low temperature this contribution vanishes for
SA = SB = 1. So, although the expressions quoted in
reference [7] (Eq. (24)) and reference [18] (Eq. (7)) are
incorrect (there appears an additional term “+1”), the
general conclusion that the presence of the biquadratic
interaction causes the narrowing of the energy bands is
confirmed as can be seen from the Figures 4 and 5.

These plots agree with the well-known fact that the
ferromagnetic biquadratic coupling has the completely op-
posite effect to the band-width from of the bilinear ferro-
magnetic exchange interaction. In fact, biquadratic cou-
pling can yield the changes in the behavior of the magnetic
system. It is clear that the increase of the biquadratic in-
teraction can produce the complete compensation the ef-
fect of bilinear exchange interaction, causing the vanishing
of the interlayer coupling between the FG (in interfaces).
This results in vanishing of the FG-s, which constitute the
Fibonacci superlattices, so they behave as independent
blocks. The further increase of the biquadratic interaction
leads to the spin reorientation in different layers [19,20].

4.3 Magnon specific heat

There are several types of excitations in solids whose con-
tribution can be distinguished during the measurement of
the specific heat. In particular, the contribution to the
specific heat can come from phonons, electrons, magnons,
excitons, etc. In this subsection we shall focus our at-
tention only to the magnon contribution to the constant
volume specific heat. The specific heat is calculated from
the expression (22), which is exact for the non-interacting
bosons. In this way, we calculated the magnon specific heat
for the second (AB), third (ABA), fifth (ABAABABA)
and eight generation (ABAABABAABAAB) for the
same set of parameters, as above, up to θ/ISA

∼= 1, which
agrees with mean-field estimate of θC/3, where boson ap-
proach is valid.

One can see that the specific heat increases with the
order of generation. Also, typically for the system under
study, the specific heat vanishes for θ → 0, contrary to
the results [6,7] which contain some peculiar oscillatory
behavior of the specific heat and its finite value for van-
ishing temperature.

Since we have proved that the linearization of spin
equations is equivalent to the lowest order Bloch’s approx-
imation, one should expect the behavior corresponding to
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Fig. 6. Specific heat (per unit cell) in terms of renormalized
temperature for second, third, fifth and eight FG, in the tem-
perature range where boson approximation is justified.

the non-interacting bosons. However, an additional verifi-
cation of our approach comes from the fact that the curves
at Figure 6 agree within the line width with the curves cal-
culated from equation (28) for the same set of parameters
(for N = 3 and N = 4, where one can obtain analytic
expressions of αN and βN).

There were previous attempts to obtain to this specific
heat numerically ([21], although the quality of the fit for
low temperatures can be questioned.

5 Conclusion

In this paper we investigated and analysed the layered
ferromagnetic quasi-periodic Fibonacci superlattices us-
ing the transfer matrix method in the low-temperature
limit. Of course, introduction of free boundary conditions
would be more realistic, yet it would introduce also surface
excitations, which would be the subject of an indepen-
dent study. We studied the case of ferromagnetic bilinear
and biquadratic coupling in interface and demonstrated
by construction that the transfer matrix of the given νth
FG can not be obtained as the product of the previous
two ones, ν − 1 and ν − 2th FG. This result is the con-
sequence of the existence of different boundary matrices
and it is completely different from the results obtained
by the authors of the series of papers published on the
subject [1,6–9]. The spectrum of the elementary magnon
excitations was determined by the numerical analysis.

Also, we have shown, that the biquadratic ferromag-
netic coupling has the opposite trend compared to bilin-
ear exchange interaction. The increase of the biquadratic
interface interaction can cause the compensation of the
bilinear coupling leading finally to independence of the
blocks building Fibonacci superlattices so that in the case
of a few ferromagnetic layers one can observe the quasi
two-dimensional behavior.

The same results were obtained also after the bosoniza-
tion in Bloch’s approximation. The equivalence of the
transfer-matrix method and boson procedure was explic-
itly demonstrated. The low-temperature internal energy
of the magnon system and its contribution to the spe-
cific heat was evaluated both analytically and numeri-
cally. We have demonstrated that close to absolute zero,
the specific heat vanishes as ∼T 3/2 characteristic for 3D
isotropic ferromagnetic systems as a consequence of exist-
ing Goldstone-mode.

This work was supported by the Serbian Ministry of Science
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